Abstract
Among current priorities of the power system analysis is the development of metrics and computational tools for the resilience analysis during catastrophic events. New methods and tools are required for such an analysis and they have to be validated prior application to real systems. However, benchmark problems are not readily available due to the analysis novelty. The current paper presents a case based on the IEEE 14-bus system for this purpose. The grid is simplified to a graph with nodes representing generators, loads, and buses. Power inputs are imported from real-time simulations of the IEEE 14-bus system. Outcomes of all possible combinations of failed elements are presented in terms of probabilities for the grid to survive, partially survive, or fail. Only the power grid's ability to withstand adverse events (survivability) is analyzed. The grid's recoverability, the other part of the resilience analysis, is not considered.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE Power and Energy Society General Meeting, PESGM 2021 - Washington, United States Duration: 26 Jul 2021 → 29 Jul 2021 |
Conference
Conference | 2021 IEEE Power and Energy Society General Meeting, PESGM 2021 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 26/07/21 → 29/07/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.
NREL Publication Number
- NREL/CP-5D00-82300
Keywords
- power system
- resilience
- survivability