Abstract
This paper examines the impacts of design, operational, and end-of-life (EOL) waste pathways' parameters on material circularity in silicon solar photovoltaic (PV) modules. Dynamic material flow analysis (DMFA) quantifies time-series material flows through systems' life cycle stages to identify hotspots of waste generation, estimate resource needs in the future, and guide sustainable material management. We introduce a DMFA framework based on U.S. electricity demand for the period 2000-2100 to assess stocks and flows of bulk PV materials (i.e., solar glass and aluminum frames). We apply the model to a range of scenarios to understand how material demands depend on selected PV-related parameters, different material circularity strategies, and recent module design trends (e.g., bifacials, large-format-high power modules). Our results enable advanced planning for future materials needs and provide insight into potential opportunities to minimize material waste.
Original language | American English |
---|---|
Pages | 560-563 |
Number of pages | 4 |
DOIs | |
State | Published - 2021 |
Event | 48th IEEE Photovoltaic Specialists Conference, PVSC 2021 - Fort Lauderdale, United States Duration: 20 Jun 2021 → 25 Jun 2021 |
Conference
Conference | 48th IEEE Photovoltaic Specialists Conference, PVSC 2021 |
---|---|
Country/Territory | United States |
City | Fort Lauderdale |
Period | 20/06/21 → 25/06/21 |
Bibliographical note
See NREL/CP-6A20-80275 for preprintNREL Publication Number
- NREL/CP-6A20-81157
Keywords
- Circular economy
- crystalline silicon photovoltaics
- dynamic material flow analysis
- waste management