A Fast All-Sky Radiation Model for Solar applications (FARMS): Algorithm and Performance Evaluation

Yu Xie, Manajit Sengupta, Jimy Dudhia

Research output: Contribution to journalArticlepeer-review

115 Scopus Citations

Abstract

Radiative transfer (RT) models simulating broadband solar radiation have been widely used by atmospheric scientists to model solar resources for various energy applications such as operational forecasting. Due to the complexity of solving the RT equation, the computation under cloudy conditions can be extremely time consuming though many approximations (e.g. two-stream approach and delta-M truncation scheme) have been utilized. Thus, a more efficient RT model is crucial for model developers as a new option for approximating solar radiation at the land surface with minimal loss of accuracy. In this study, we developed a fast all-sky radiation model for solar applications (FARMS) using the simplified clear-sky RT model, REST2, and simulated cloud transmittances and reflectances from Rapid Radiation Transfer Model (RRTM) with a sixteen-stream Discrete Ordinates Radiative Transfer (DISORT). Simulated lookup tables (LUTs) of cloud transmittances and reflectances are created by varying cloud optical thicknesses, cloud particle sizes, and solar zenith angles. Equations with optimized parameters are fitted to the cloud transmittances and reflectances to develop the model. The all-sky solar irradiance at the land surface can then be computed rapidly by combining REST2 with the cloud transmittances and reflectances. This new RT model is more than 1000 times faster than those currently utilized in solar resource assessment and forecasting since it does not explicitly solve the RT equation for each individual cloud condition. Our results indicate the accuracy of the fast radiative transfer model is comparable to or better than two-stream approximation in term of computing cloud transmittance and solar radiation.

Original languageAmerican English
Pages (from-to)435-445
Number of pages11
JournalSolar Energy
Volume135
DOIs
StatePublished - 1 Oct 2016

Bibliographical note

Publisher Copyright:
© 2016 Elsevier Ltd.

NREL Publication Number

  • NREL/JA-5D00-65078

Keywords

  • Cloud
  • Radiative transfer model
  • Solar radiation

Fingerprint

Dive into the research topics of 'A Fast All-Sky Radiation Model for Solar applications (FARMS): Algorithm and Performance Evaluation'. Together they form a unique fingerprint.

Cite this