Abstract
There has been a global push for higher torque density and lower cost traction motors. The use of non-heavy rare-earth (non-HRE) permanent magnet materials in traction motors are being investigated for the sustainability, profitability and affordability of electric vehicles and to broaden their adoption. A 20,000-rpm permanent magnet traction motor using non-HRE magnet materials is proposed. A dual three-phase winding configuration driven by a segmented dual three-phase drive is proposed to reduce the current ripple, and as a result, the DC Link capacitor, as well as to ease the voltage constraint at high speed and eliminate any risk of uncontrolled regeneration. Furthermore, the dual winding configuration enables a fault tolerant design which is useful for reliability. The paper presents comprehensive electromagnetic, thermal and mechanical designs and analyses using an integrated approach. The results have shown that the design is robust against demagnetization and confirmed its thermal and mechanical viability.
Original language | American English |
---|---|
Pages | 61-67 |
Number of pages | 7 |
DOIs | |
State | Published - 11 Oct 2020 |
Event | 12th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2020 - Virtual, Detroit, United States Duration: 11 Oct 2020 → 15 Oct 2020 |
Conference
Conference | 12th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Detroit |
Period | 11/10/20 → 15/10/20 |
Bibliographical note
See NREL/CP-5400-75994 for preprintNREL Publication Number
- NREL/CP-5400-78713
Keywords
- electric vehicle
- non-heavy rare-earth motors
- traction motors