A Hybrid Pathway to Biojet Fuel via 2,3-Butanediol

Shiba Adhikaria, Junyan Zhang, Qianying Guo, Kinga Unocic, Ling Tao, Zhenglong Li

Research output: Contribution to journalArticlepeer-review

24 Scopus Citations

Abstract

Production of biomass-derived sustainable alternative jet fuels (SAJF) has been considered as an important approach to decarbonize the aviation industry but still possesses various challenges in technology advancement, particularly in achieving high carbon efficiency. Here we report a hybrid pathway to SAJF from 2,3-butanediol (2,3-BDO), integrating biologically converting biomass to 2,3-BDO with catalytically upgrading of 2,3-BDO to jet-range hydrocarbons. This pathway is demonstrated to have a high carbon recovery to liquid hydrocarbons from corn stover (25-28%) (74-82% of the theoretical maximum efficiency). The catalytic conversion steps involve 2,3-BDO to C3+ olefins, oligomerization, and hydrogenation where the first two steps are the focus of this study. Under optimum reaction conditions (523 K, 115 kPa, 1.0 h-1 weight hourly space velocity), 2,3-BDO conversion and C3+ olefin selectivity are >97% and 94-98% during 40 h time on stream, respectively. To demonstrate the adaptability of this technology with bio-derived 2,3-BDO, we also investigated the impact of water and other organic coproducts (acetoin and acetic acid) inherited from the fermentation broth on the catalyst performance and product selectivities. We have shown that the catalyst can handle a significant amount of water in the liquid feed (40 wt% water/60 wt% 2,3-BDO) and maintain catalyst stability for ∼40 h. Acetoin can be converted to similar C3+ olefins as 2,3-BDO with complete conversion of acetoin. Co-feeding 10 wt% acetoin with 2,3-BDO is found to have no impact on 2,3-BDO conversion, C3+ olefin selectivity, and catalyst stability. The utilization of organic coproduct like acetoin can help to improve overall carbon conversion efficiency when using real biomass-derived 2,3-BDO. On the other hand, the presence of 10 wt% acetic acid is shown to drastically inhibit methyl ethyl ketone (MEK) hydrogenation and butene oligomerization as revealed by the increased MEK and butene selectivities, implying the importance of separating organic acids when feeding bio-derived 2,3-BDO. The formed C3-C6 olefins from 2,3-BDO are further oligomerized over Amberlyst-36 catalyst to longer-chain hydrocarbons with >70 wt% jet-range hydrocarbons including predominantly iso-olefins/iso-paraffins. The overall carbon efficiency for the jet-range hydrocarbons is 19-22%, exceeding most of the reported biojet pathways, which makes it a promising approach for SAJF production.

Original languageAmerican English
Pages (from-to)3904-3914
Number of pages11
JournalSustainable Energy and Fuels
Volume4
Issue number8
DOIs
StatePublished - Aug 2020

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry.

NREL Publication Number

  • NREL/JA-5100-76698

Keywords

  • biomass to jet fuel
  • butanediol
  • hybrid pathway
  • methyl ethyl ketone

Fingerprint

Dive into the research topics of 'A Hybrid Pathway to Biojet Fuel via 2,3-Butanediol'. Together they form a unique fingerprint.

Cite this