Abstract
State-of-the-art organic photovoltaic (OPV) materials are composed of complex, chemically diverse polymeric and molecular structures that form highly intricate solid-state interactions, collectively yielding exceptional tunability in performance and aesthetics. These properties are especially attractive for semitransparent power-generating windows or shades in living environments, greenhouses, or other architectural integrations. However, before such a future is realized, a broader and deeper understanding of property stability must be acquired. Stability during operating and environmental conditions is critical, namely, material color steadfastness, optoelectronic performance retention, morphological rigidity, and chemical robustness. To date, no single investigation encompasses all four distinct, yet interconnected, metrics. Here, we present a multimodal strategy that captures a dynamic and interconnected evolution of each property during the course of an accelerated photobleaching experiment. We demonstrate this approach across relevant length scales (from molecular to visual macroscale) using X-ray photoelectron spectroscopy, grazing-incidence X-ray scattering, microwave conductivity, and time-dependent photobleaching spectroscopies for two high-performance semitransparent OPV blends—PDPP4T:PC60BM and PDPP4T:IEICO-4F, with comparisons to the stabilities of the individual components. We present direct evidence that specific molecular acceptor (fullerene vs nonfullerene) designs and the resulting donor-acceptor interactions lead to distinctly different mechanistic routes that ultimately arrive at what is termed “OPV degradation.” We directly observe a chemical oxidation of the cyano endcaps of the IEICO-4F that coincides with a morphological change and large loss in photoconductivity while the fullerene acceptor-containing blend demonstrates a significantly greater fraction of oxygen uptake but retains 55% of the photoconductivity. This experimental roadmap provides meaningful guidance for future high-throughput, multimodal studies, benchmarking the sensitivity of the different analytical techniques for assessing stability in printable active layers, independent of complete device architectures.
Original language | American English |
---|---|
Pages (from-to) | 44641-44655 |
Number of pages | 15 |
Journal | ACS Applied Materials and Interfaces |
Volume | 13 |
Issue number | 37 |
DOIs | |
State | Published - 22 Sep 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Chemical Society
NREL Publication Number
- NREL/JA-5900-80657
Keywords
- aesthetic
- degradation
- morphological stability
- organic photovoltaics
- performance