A Novel Solar Simulator Based on a Super-Continuum Laser

Tasshi Dennis, John B. Schlager, Hao Chih Yuan, Qi Wang, Daniel Friedman

Research output: Contribution to conferencePaperpeer-review

5 Scopus Citations

Abstract

The design and operation of a novel solar simulator based on a high-power, super-continuum fiber laser is described in this work. The simulator features a multi-sun irradiance with continuous spectral coverage from the visible to the infrared. By use of a prism-based spectral shaper, the simulator can be matched to any desired spectral profile, including the ASTM G-173-03 air-mass 1.5 direct or other global reference spectra. The simulator has been effectively used to measure the efficiency of gallium-arsenide (GaAs) and crystalline silicon (Si) solar cells, showing good agreement with independent measurements. The pulsed temporal characteristic of the simulator was studied and shown to have a negligible influence on measurements of cell efficiency for both GaAs and Si materials. The ability to arbitrarily shape the spectrum of the simulator may find application in multi-junction testing, and the potential for diffraction-limited focusing could enable localized excitation of advanced photovoltaic materials.

Original languageAmerican English
Pages1845-1848
Number of pages4
DOIs
StatePublished - 2012
Event38th IEEE Photovoltaic Specialists Conference, PVSC 2012 - Austin, TX, United States
Duration: 3 Jun 20128 Jun 2012

Conference

Conference38th IEEE Photovoltaic Specialists Conference, PVSC 2012
Country/TerritoryUnited States
CityAustin, TX
Period3/06/128/06/12

NREL Publication Number

  • NREL/CP-5200-57520

Fingerprint

Dive into the research topics of 'A Novel Solar Simulator Based on a Super-Continuum Laser'. Together they form a unique fingerprint.

Cite this