Abstract
A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2017 |
Event | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) - Washington, D.C. Duration: 25 Jun 2017 → 30 Jun 2017 |
Conference
Conference | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) |
---|---|
City | Washington, D.C. |
Period | 25/06/17 → 30/06/17 |
Bibliographical note
See NREL/CP-5K00-73962 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5J00-67847
Keywords
- bifacial PV module
- configuration factor
- irradiance
- model
- performance