Abstract
We present a simple physical model that explains the device operation of a three-terminal (3T) IBC Si bottom cell platform that enables an efficient 3T tandem. If the IBC cell has two p-n junctions and one high-low junction (bipolar transistor), the two p-n junctions strongly interact via minority carrier diffusion in the base. In a two-BSF junction and one p-n junction IBC platform (single emitter), the BSF terminals interact via ohmic majority carrier current in the base. This interaction creates wide "generating" power islands in the 2D current J1J2 plane. The area and shape of these islands are determined by dissipative losses in the wafer base and in the cell contacts. Both positive and negative terminal currents are allowed for 3T operation, thus enabling both the top and bottom cells to operate at their full light currents. This opens new possibilities for 3T use in modules.
Original language | American English |
---|---|
Pages | 2176-2178 |
Number of pages | 3 |
DOIs | |
State | Published - Jun 2019 |
Event | 46th IEEE Photovoltaic Specialists Conference, PVSC 2019 - Chicago, United States Duration: 16 Jun 2019 → 21 Jun 2019 |
Conference
Conference | 46th IEEE Photovoltaic Specialists Conference, PVSC 2019 |
---|---|
Country/Territory | United States |
City | Chicago |
Period | 16/06/19 → 21/06/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
NREL Publication Number
- NREL/CP-5900-73142
Keywords
- bipolar transistor
- photovoltaic cells
- silicon