Abstract
Bioconversion of high-volume waste streams into value-added products will be an integral component of the growing bioeconomy. Volatile fatty acids (VFAs) (e.g., butyrate, valerate, and hexanoate) are an emerging and promising waste-derived feedstock for microbial carbon upcycling. Cupriavidus necator H16 is a favorable host for conversion of VFAs into various bioproducts due to its diverse carbon metabolism, ease of metabolic engineering, and use at industrial scales. Here, we report that a common strategy to improve product titers in C. necator, deletion of the polyhydroxybutyrate (PHB) biosynthetic operon, results in a significant growth defect on VFA substrates. Using adaptive laboratory evolution, we identify mutations to the regulator gene phaR, the two-component response regulator-histidine kinase pair encoded by H16_A1372/H16_A1373, and the tripartite transporter assembly encoded by H16_A2296-A2298 as causative for improved growth on VFA substrates. Deletion of phaR and H16_A1373 led to significantly reduced NADH abundance accompanied by large changes to expression of genes involved in carbon metabolism, balance of electron carriers, and oxidative stress tolerance that may be responsible for improved growth of these engineered strains. These results provide insight into the role of PHB biosynthesis in carbon and energy metabolism and highlight a key role for the regulator PhaR in global regulatory networks. By combining mutations, we generated platform strains with significant growth improvements on VFAs, which can enable improved conversion of waste-derived VFA substrates to target bioproducts.
Original language | American English |
---|---|
Pages (from-to) | 262-273 |
Number of pages | 12 |
Journal | Metabolic Engineering |
Volume | 86 |
DOIs | |
State | Published - 2024 |
NREL Publication Number
- NREL/JA-2A00-91435
Keywords
- carbon metabolism
- PHB biosynthesis
- volatile fatty acids
- waste-derived feedstock