Abstract
The System Advisor Model (SAM) is modeling software for renewable energy systems developed by the National Renewable Energy Laboratory (NREL). SAM combines annual time series power production models with financial models to estimate the levelized cost of energy (LCOE) and other metrics for renewable energy projects. To date, SAM has utilized the general purpose commercial TRNSYS transient systems modeling software package for CSP simulations and originally PV and wind. To achieve: (1) significantly faster model performance, (2) easy parallelization of concurrent simulations to take advantage of modern multi-core processor desktop computers, (3) to allow straightforward modification of CSP component models in the SAM environment, and (4) ability to include CSP technologies in the SAM Software Development Kit (SDK), NREL has undertaken to reformulate the CSP models into a new transient simulation framework written in C++, by NREL. This framework is tailored specifically for use in SAM and not for general purpose modeling like TRNSYS. Preliminary results show excellent matching with the accepted TRNSYS-based models, as well as an order of magnitude reduction in simulation time for certain models. These runtime reductions enable larger scale plant configuration analysis, as well as grid-integration studies that require many thousands of simulations.
Original language | American English |
---|---|
Pages | 2482-2489 |
Number of pages | 8 |
DOIs | |
State | Published - 2014 |
Event | International Conference on Solar Power and Chemical Energy Systems, SolarPACES 2013 - Las Vegas, NV, United States Duration: 17 Sep 2013 → 20 Sep 2013 |
Conference
Conference | International Conference on Solar Power and Chemical Energy Systems, SolarPACES 2013 |
---|---|
Country/Territory | United States |
City | Las Vegas, NV |
Period | 17/09/13 → 20/09/13 |
NREL Publication Number
- NREL/CP-6A20-61629
Keywords
- Concentrating solar power simulation
- Systems modeling