Abstract
Iridium oxide (IrO2) is recognized as a state-of-art catalyst for anodes of low-temperature polymer-electrolyte membrane water electrolyzers (PEMWE), one of the promising clean energy technologies to produce hydrogen, a critical energy carrier for decarbonization. However, typical IrO2 ink formulations are challenging to process in liquid-film coating processes because of their poor stability against gravitational settling and low viscosities. Here we report on time evolution of the microstructure of concentrated IrO2 inks in a water-rich dispersion medium, probed using a combination of rheology and X-ray scattering for up to four days. The inks progressively evolve from a predominantly liquid-like to a gel-like material with increasing aging time that can be leveraged as a formulation strategy to enhance their stability against sedimentation, and processability during electrode fabrication. We also elucidate the aging behavior by investigating the effects of ink formulation composition - ionomer concentration and solvent composition - and using the extended-DLVO theory. The implications of aging on electrode fabrication, including via direct coating onto membranes and porous transport layers, and membrane-electrode-assembly performance has also been examined. Our findings offer not only a facile but also an environmentally benign formulation strategy to enhance ink processibility, expand practical fabrication approaches, and advance PEMWE manufacturing.
Original language | American English |
---|---|
Pages (from-to) | 9028-9049 |
Number of pages | 22 |
Journal | Soft Matter |
Volume | 20 |
Issue number | 45 |
DOIs | |
State | Published - 2024 |
NREL Publication Number
- NREL/JA-5K00-90852
Keywords
- aging
- catalyst inks
- interparticle interactions
- MEA fabrication
- MEA performace
- rheology
- x-ray scattering