Abstract
This paper presents a new Multi-Phase Multi-Inductor Hybrid (MP-MIH) converter that features high efficiency at large conversion ratios, while operating the switches with duty cycles larger than state-of-the-art hybrid topologies. In this converter, the capacitors are soft-charged and soft-discharged through three inductors operated in three interleaving phases. An experimental six-level three-phase converter prototype achieves 94.6% peak efficiency and 425 W/in power density for conversions from 48V to 1V-2V at loads of up to 40A. This multi-phase multi-inductor hybrid converter architecture can be extended to any number of switched-capacitor network levels to support wide range of input and output voltages and load currents in data centers, telecommunication and other high-performance digital systems.
Original language | American English |
---|---|
Pages | 25-29 |
Number of pages | 5 |
DOIs | |
State | Published - 24 May 2019 |
Event | 34th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2019 - Anaheim, United States Duration: 17 Mar 2019 → 21 Mar 2019 |
Conference
Conference | 34th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2019 |
---|---|
Country/Territory | United States |
City | Anaheim |
Period | 17/03/19 → 21/03/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
NREL Publication Number
- NREL/CP-5D00-74261
Keywords
- Capacitance optimization
- Complete soft-charging
- Hybrid converter
- Multi phase operation
- Switched capacitor network