Antisolvent-Mediated Air Quench for High-Efficiency Air-Processed Carbon-Based Planar Perovskite Solar Cells: Article No. 2400599

Jacob Wall, Kausar Khawaja, Wenjun Xiang, Adam Dvorak, Christopher Picart, Xiaoyu Gu, Lin Li, Nicholas Rolston, Kai Zhu, Joseph Berry, Feng Yan

Research output: Contribution to journalArticlepeer-review

Abstract

Perovskite solar cells (PSCs) have emerged as a leading low-cost photovoltaic technology, achieving power conversion efficiencies (PCEs) of up to 26.1%. However, their commercialization is hindered by stability issues and the need for controlled processing environments. Carbon-electrode-based PSCs (C-PSCs) offer enhanced stability and cost-effectiveness compared to traditional metal-electrode PSCs, i.e., Au and Ag. However, processing challenges persist, particularly in air conditions where moisture sensitivity poses a significant hurdle. Herein, a novel air processing technique is presented for planar C-PSCs that incorporates antisolvent vapors, such as chlorobenzene, into a controlled air-quenching process. This method effectively mitigates moisture-induced instability, resulting in champion PCEs exceeding 20% and robust stability under ambient conditions. The approach retains 80% of initial efficiency after 30 h of operation at maximum power point without encapsulation. This antisolvent-mediated air-quenching technique represents a significant advancement in the scalable production of C-PSCs, paving the way for future large-scale deployment.
Original languageAmerican English
JournalSolar RRL
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-5900-91646

Keywords

  • antisolvents
  • arbon-electrode-based PSCs
  • perovskite solar cells

Fingerprint

Dive into the research topics of 'Antisolvent-Mediated Air Quench for High-Efficiency Air-Processed Carbon-Based Planar Perovskite Solar Cells: Article No. 2400599'. Together they form a unique fingerprint.

Cite this