Abstract
One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the filmsand thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; thephotocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.
Original language | American English |
---|---|
State | Published - 2012 |
Event | American Chemical Society. 244th ACS National Meeting - Philadelphia, Pennsylvania Duration: 19 Aug 2012 → 23 Aug 2012 |
Conference
Conference | American Chemical Society. 244th ACS National Meeting |
---|---|
City | Philadelphia, Pennsylvania |
Period | 19/08/12 → 23/08/12 |
NREL Publication Number
- NREL/CP-5900-56376