Abstract
Estimates show that 6.2 gigatons of carbon dioxide (CO2) can be captured and utilized across three pathways, concrete, chemical, and minerals, by 2050. However, it is difficult to compare the climate benefit across these three carbon capture and utilization (CCU) pathways to determine the most effective use of captured CO2. The life cycle assessment methods to evaluate the climate benefit of CCU chemicals should additionally account for the change in material properties of concrete due to CO2 utilization. Furthermore, with most CO2 utilization technologies being in the early stages of research and development, the uncertainty and variability in process and inventory data present a significant challenge in evaluating the climate benefit. We present a stochastically determined climate return on investment (ROI) metric to rank and prioritize CO2 utilization across 20 concrete, chemical and mineral pathways based on the realized climate benefit. We show that two concrete pathways, which use CO2 during concrete mixing, and two chemical pathways, which produce formic acid through hydrogenation of CO2 and carbon monoxide through dry reforming of methane, generate the greatest climate ROI and are the only CCU pathways with a higher likelihood of generating a climate benefit than a climate burden.
Original language | American English |
---|---|
Pages (from-to) | 12019-12031 |
Number of pages | 13 |
Journal | Environmental Science and Technology |
Volume | 55 |
Issue number | 17 |
DOIs | |
State | Published - 2021 |
NREL Publication Number
- NREL/JA-6A20-81074
Keywords
- carbon capture and utilization
- chemical production
- climate impact
- CO2 utilization
- concrete production
- life cycle assessment
- mineral production