TY - JOUR
T1 - Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis
T2 - Article No. 119876
AU - Ren, Simiao
AU - Hu, Wayne
AU - Bradbury, Kyle
AU - Harrison-Atlas, Dylan
AU - Malaguzzi Valeri, Laura
AU - Murray, Brian
AU - Malof, Jordan
PY - 2022
Y1 - 2022
N2 - High quality energy systems information is a crucial input to energy systems research, modeling, and decision-making. Unfortunately, actionable information about energy systems is often of limited availability, incomplete, or only accessible for a substantial fee or through a non-disclosure agreement. Recently, remotely sensed data (e.g., satellite imagery, aerial photography) have emerged as a potentially rich source of energy systems information. However, the use of these data is frequently challenged by its sheer volume and complexity, precluding manual analysis. Recent breakthroughs in machine learning have enabled automated and rapid extraction of useful information from remotely sensed data, facilitating large-scale acquisition of critical energy system variables. Here we present a systematic review of the literature on this emerging topic, providing an in-depth survey and review of papers published within the past two decades. We first taxonomize the existing literature into ten major areas, spanning the energy value chain. Within each research area, we distill and critically discuss major features that are relevant to energy researchers, including, for example, key challenges regarding the accessibility and reliability of the methods. We then synthesize our findings to identify limitations and trends in the literature as a whole, and discuss opportunities for innovation. These include the opportunity to extend the methods beyond electricity to broader energy systems and wider geographic areas; and the ability to expand the use of these methods in research and decision making as satellite data become cheaper and easier to access. We also find that there are persistent challenges: limited standardization and rigor of performance assessments; limited sharing of code, which would improve replicability; and a limited consideration of the ethics and privacy of data.
AB - High quality energy systems information is a crucial input to energy systems research, modeling, and decision-making. Unfortunately, actionable information about energy systems is often of limited availability, incomplete, or only accessible for a substantial fee or through a non-disclosure agreement. Recently, remotely sensed data (e.g., satellite imagery, aerial photography) have emerged as a potentially rich source of energy systems information. However, the use of these data is frequently challenged by its sheer volume and complexity, precluding manual analysis. Recent breakthroughs in machine learning have enabled automated and rapid extraction of useful information from remotely sensed data, facilitating large-scale acquisition of critical energy system variables. Here we present a systematic review of the literature on this emerging topic, providing an in-depth survey and review of papers published within the past two decades. We first taxonomize the existing literature into ten major areas, spanning the energy value chain. Within each research area, we distill and critically discuss major features that are relevant to energy researchers, including, for example, key challenges regarding the accessibility and reliability of the methods. We then synthesize our findings to identify limitations and trends in the literature as a whole, and discuss opportunities for innovation. These include the opportunity to extend the methods beyond electricity to broader energy systems and wider geographic areas; and the ability to expand the use of these methods in research and decision making as satellite data become cheaper and easier to access. We also find that there are persistent challenges: limited standardization and rigor of performance assessments; limited sharing of code, which would improve replicability; and a limited consideration of the ethics and privacy of data.
KW - aerial
KW - artificial intelligence
KW - data extraction
KW - drone
KW - energy data
KW - machine learning
KW - remote sensing
KW - review
KW - satellite
U2 - 10.1016/j.apenergy.2022.119876
DO - 10.1016/j.apenergy.2022.119876
M3 - Article
SN - 0306-2619
VL - 326
JO - Applied Energy
JF - Applied Energy
ER -