Abstract
Mixed phase nanocrystalline/amorphous-silicon (nc/a-Si:H) thin films with band-gap higher than bulk silicon are prepared by depositing silicon nanoparticles (SiNPs), prepared in a separate deposition zone, and hydrogenated amorphous silicon (a-Si:H), simultaneously. Since the two deposition phases are well decoupled, optimized parameters for each component can apply to the growth process. Photoluminescence spectroscopy (PL) shows that the embedded SiNPs are small enough to exhibit quantum confinement effects. The low temperature PL measurements on the mixed phase reveal a dominant emission feature, which is associated with SiNPs surrounded by a-Si:H. In addition, we compare time dependent low temperature PL measurements for both a-Si:H and mixed phase material under intensive laser exposure for various times up to two hours. The PL intensity of a-Si:H with embedded SiNPs degrades much less than that of pure a-Si:H. We propose this improvement of photostability occurs because carriers generated in the a-Si:H matrix quickly transfer into SiNPs and recombine there instead of recombining in a-Si:H and creating defect states (Staebler-Wronski Effect).
Original language | American English |
---|---|
Pages | 2780-2785 |
Number of pages | 6 |
DOIs | |
State | Published - 18 Nov 2016 |
Event | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States Duration: 5 Jun 2016 → 10 Jun 2016 |
Conference
Conference | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 5/06/16 → 10/06/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5J00-67939
Keywords
- amorphous
- carrier transfer
- defect
- light-induced degradation
- nanoparticles
- photoluminescence
- silicon