Abstract
We present in this paper a graph based forwardlooking algorithm applied to distribution planning in the context of distributed PV penetration. We study the target hosting capacity (THC) problem where the objective is to find the cheapest sequence of system upgrades to reach a predefined hosting capacity target value. We show in this paper that commonly used short-term cost minimization approaches lead most of the time to suboptimal solutions. By comparing our method against such myopic techniques on real distribution systems, we show that our algorithm is able to reduce the overall integration costs by looking at future decisions. Because hosting capacity is hard to compute, this problem requires efficient methods to search the space. We demonstrate here that heuristics using domain specific knowledge can be efficiently used to improve the algorithm performance such that real distribution systems can be studied.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2018 |
Event | 2018 World Conference on Photovoltaic Energy Conversion (WCPEC-7) - Waikoloa, Hawaii Duration: 10 Jun 2018 → 15 Jun 2018 |
Conference
Conference | 2018 World Conference on Photovoltaic Energy Conversion (WCPEC-7) |
---|---|
City | Waikoloa, Hawaii |
Period | 10/06/18 → 15/06/18 |
Bibliographical note
See NREL/JA-5D00-74325 for related journal articleNREL Publication Number
- NREL/CP-5D00-71565
Keywords
- hosting capacity
- informed heuristics
- shortest path