Biohydrogen: Prospects for Industrial Utilization and Energy Resiliency in Rural Communities

Anurag Mandalika, Katherine Chou, Stephen Decker

Research output: Contribution to journalArticlepeer-review

Abstract

Biohydrogen (bioH2) production in rural regions of the United States leveraged from existing biomass waste streams serves two extant needs: rural energy resiliency and decarbonization of heavy industry, including the production of ammonia and other H2-dependent nitrogenous products. We consider bioH2 production using two different strategies: (1) dark fermentation (DF) and (2) anaerobic digestion followed by steam methane reforming of the biogas (AD-SMR). Production of bioH2 from biomass waste streams is a potentially ‘greener' pathway in comparison to natural gas-steam methane reforming (NG-SMR), especially as fugitive emissions from these wastes are avoided. It also provides a decarbonizing potential not found in water-splitting technologies. Based on literature on DF and AD of crop residues, woody biomass residues from forestry wastes, and wastewaters containing fats, oils, and grease (FOG), we outline scenarios for bioH2 production and displacement of fossil fuel derived methane. Finally, we compare the costs and carbon intensity (CI) of bioH2 production with those of other H2 production pathways.
Original languageAmerican English
Number of pages7
JournalFrontiers in Industrial Microbiology
Volume2
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-2700-90060

Keywords

  • anaerobic digestion
  • biogas
  • biohydrogen
  • biorefinery
  • dark fermentation
  • energy resiliency

Fingerprint

Dive into the research topics of 'Biohydrogen: Prospects for Industrial Utilization and Energy Resiliency in Rural Communities'. Together they form a unique fingerprint.

Cite this