Black-Box Optimization for Design of Concentrating Solar Power and Photovoltaic Hybrid Systems with Optimal Dispatch Decisions

William Hamilton, Michael Wagner, Alexandra Newman, Robert Braun

Research output: Contribution to conferencePaperpeer-review

1 Scopus Citations

Abstract

The hybridization of concentrating solar power (CSP) and photovoltaics (PV) can enable dispatchable renewable electricity generation at a lower price than current stand-alone CSP systems. However, designing a CSP-PV hybrid system can be challenging because of the many degrees of freedom in design that affect the internal and external system interactions and trade-offs. We develop a methodology to determine optimal designs for CSP-PV hybrids by implementing NLopt’s derivative-free, or “black-box,” algorithms around pre-existing CSP-PV hybrid simulation software that utilizes the National Renewable Energy Laboratory’s System Advisor Model (SAM); we then employ a dispatch optimization model to determine operational decisions that maximize a plant’s profits. We present optimal designs for CSP-PV hybrid systems dispatching against four time-of-delivery (ToD) pricing structures. NLopt’s algorithms can improve the base case design’s power purchase agreement (PPA) price by 15% to 21%, depending on the ToD pricing structure. In addition, we present the resulting optimal CSP-PV hybrid design’s annual performance metrics, which tend to have capacity factors between 50% and 62%, but are able to generate electricity during the year’s highest-valued periods about 90% of the time. Lastly, we investigate the trade-offs between capacity factor and PPA price using Pareto fronts and demonstrate that, for some ToD pricing structures, the system capacity factor can increase by 20% but at the expense of a 2% increase in PPA price.

Original languageAmerican English
Number of pages8
DOIs
StatePublished - 11 Dec 2020
Event2019 International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2019 - Daegu, Korea, Republic of
Duration: 1 Oct 20194 Oct 2019

Conference

Conference2019 International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2019
Country/TerritoryKorea, Republic of
CityDaegu
Period1/10/194/10/19

Bibliographical note

Publisher Copyright:
© 2020 American Institute of Physics Inc.. All rights reserved.

NREL Publication Number

  • NREL/CP-5700-78823

Keywords

  • black-box
  • capacity factor
  • concentrated solar power
  • electricity generation
  • photovoltaics
  • public policy and governance
  • software engineering

Fingerprint

Dive into the research topics of 'Black-Box Optimization for Design of Concentrating Solar Power and Photovoltaic Hybrid Systems with Optimal Dispatch Decisions'. Together they form a unique fingerprint.

Cite this