Abstract
Inverters using phase-locked loops for control depend on voltages generated by synchronous machines to operate. This might be problematic if much of the conventional generation fleet is displaced by inverters. To solve this problem, grid-forming control for inverters has been proposed as being capable of autonomously regulating grid voltages and frequency. Presently, the performance of bulk power systems with massive penetrations of grid-forming inverters has not been thoroughly studied to elucidate benefits. Hence, this paper presents inverter models with two grid-forming strategies: virtual oscillator control and droop control. The two models are specifically developed to be used in positive-sequence simulation packages and have been implemented in PSLF. The implementations are used to study the performance of bulk power grids incorporating inverters with grid-forming capability. Specifically, simulations are conducted on a modified IEEE 39-bus test system and the micro-WECC test system with varying levels of synchronous and inverter-based generation. The dynamic performance of the tested systems with grid-forming inverters during contingency events is better than cases with only synchronous generation.
Original language | American English |
---|---|
Number of pages | 9 |
State | Published - 2019 |
Event | 46th IEEE Photovoltaic Specialists Conference (PVSC 46) - Chicago, Illinois Duration: 16 Jun 2019 → 21 Jun 2019 |
Conference
Conference | 46th IEEE Photovoltaic Specialists Conference (PVSC 46) |
---|---|
City | Chicago, Illinois |
Period | 16/06/19 → 21/06/19 |
Bibliographical note
See NREL/CP-5D00-76330 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5D00-74107
Keywords
- droop control
- frequency control
- grid-forming inverters
- inverter controls
- photovoltaic inverters
- virtual oscillator control