CdS/CdTe Solar Cells Containing Directly Deposited CdSxTe1-x Alloy Layers: Preprint

Research output: Contribution to conferencePaper


A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in thisinterdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have acubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment (HT) at~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 HT. Filmssputtered in O2 partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdSxTe1-x alloy layer into the device structure produces devices of comparable performance to those without the alloy layer whena CdCl2 HT is performed. Further investigation is required to determine whether the CdCl2 heat treatment step can be altered or eliminated through direct deposition of the alloy layer.
Original languageAmerican English
Number of pages8
StatePublished - 2011
Event37th IEEE Photovoltaic Specialists Conference (PVSC 37) - Seattle, Washington
Duration: 19 Jun 201124 Jun 2011


Conference37th IEEE Photovoltaic Specialists Conference (PVSC 37)
CitySeattle, Washington

NREL Publication Number

  • NREL/CP-5200-50755


  • CdS
  • CdTe
  • photovoltaic
  • PV
  • solar cells
  • thin films


Dive into the research topics of 'CdS/CdTe Solar Cells Containing Directly Deposited CdSxTe1-x Alloy Layers: Preprint'. Together they form a unique fingerprint.

Cite this