Abstract
The metabolic enzymes like any enzymes generally display globular architecture where secondary structure elements and interactions between them preserve the spatial organization of the protein. A typical enzyme features a well-defined active site, designed for selective binding of the reaction substrate and facilitating a chemical reaction converting the substrate into a product. While many chemical reactions could be facilitated using only the functional groups that are found in proteins, the large percentage or intracellular reactions require use of cofactors, varying from single metal ions to relatively large molecules like numerous coenzymes, nucleotides and their derivatives, dinucleotides or hemes. Quite often these large cofactors become important not only for the catalytic function of the enzyme but also for the structural stability of it, as those are buried deep in the enzyme.
Original language | American English |
---|---|
Title of host publication | Methods in Molecular Biology |
Subtitle of host publication | Methods in Molecular Biology, Volume 2096 |
Editors | M. E. Himmel, Y. J. Bomble |
Publisher | Humana Press Inc. |
Pages | 125-139 |
Number of pages | 15 |
DOIs | |
State | Published - 2020 |
Publication series
Name | Methods in Molecular Biology |
---|---|
Volume | 2096 |
ISSN (Print) | 1064-3745 |
ISSN (Electronic) | 1940-6029 |
Bibliographical note
Publisher Copyright:© Springer Science+Business Media, LLC, part of Springer Nature 2020.
NREL Publication Number
- NREL/CH-2700-74952
Keywords
- Cofactors
- Metabolic channels
- Metabolic enzymes
- X-ray diffraction