Abstract
Backsheet degradation is key to maintaining the lifetime of photovoltaic (PV) modules. Cracking, delamination, bubbling, and discoloration are main types of degradation. PV modules were collected from PV installations in multiple climatic zones. Multiple types of backsheets were obtained with poly(ethylene teraphlate) (PET) and polyamide air side layers being the largest number of backsheets retrieved. Multiple commercial PV backsheets were exposed to multiple accelerated exposures and key degradation mechanisms were identified. Polyamide backsheets showed cracking in retrieved modules and under accelerated exposures. Poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF) showed the highest stability in retrieved and accelerated exposures. While polyamide had the largest amount of large scale degradation.
Original language | American English |
---|---|
Pages | 3545-3549 |
Number of pages | 5 |
DOIs | |
State | Published - Jun 2019 |
Event | 46th IEEE Photovoltaic Specialists Conference, PVSC 2019 - Chicago, United States Duration: 16 Jun 2019 → 21 Jun 2019 |
Conference
Conference | 46th IEEE Photovoltaic Specialists Conference, PVSC 2019 |
---|---|
Country/Territory | United States |
City | Chicago |
Period | 16/06/19 → 21/06/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
NREL Publication Number
- NREL/CP-5K00-78482
Keywords
- accelerated exposures
- backsheet degradation
- cracking