Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events: Preprint

Yi Guo, Jonathan Keller, Jan Helsen, Patrick Guillaume

Research output: Contribution to conferencePaper

Abstract

Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer period of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.
Original languageAmerican English
Number of pages8
StatePublished - 2016
Event23rd International Congress on Sound and Vibration - Athens, Greece
Duration: 10 Jul 201614 Jul 2016

Conference

Conference23rd International Congress on Sound and Vibration
CityAthens, Greece
Period10/07/1614/07/16

NREL Publication Number

  • NREL/CP-5000-66336

Keywords

  • gearbox
  • grid
  • NREL
  • rolling element bearing
  • skidding
  • wind turbines

Fingerprint

Dive into the research topics of 'Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events: Preprint'. Together they form a unique fingerprint.

Cite this