Abstract
We have characterized the properties of chalcopyrite ZnGeAs2 thin films produced over a wide range of growth conditions using pulsed laser deposition. By using a Zn-enriched target, stoichiometric films could be produced up to a substrate temperature of 315° C; above which the films were Zn and As deficient. Optical absorption measurements indicate that bandgap of the ZnGeAs2 thin films is direct with a value of -1.15 eV. Hot point probe indicate that the as-deposited and annealed thin films are both p-type. Hall measurements confirm this and also indicate that the carrier mobility, μp, is over 50 cm2/V·sec in the 600° C annealed samples. Channeling Rutherford Backscattering Spectroscopy (RBS) indicates that the structurally best films are achieved after 450° C annealing with a channeling yield, χmin, of 500%. Our results, in combination with the observation that the constituents are abundant elements, suggest that ZnGeAs2 is an ideal candidate for photovoltaic applications.
Original language | American English |
---|---|
Pages | 437-439 |
Number of pages | 3 |
DOIs | |
State | Published - 2009 |
Externally published | Yes |
Event | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States Duration: 7 Jun 2009 → 12 Jun 2009 |
Conference
Conference | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 |
---|---|
Country/Territory | United States |
City | Philadelphia, PA |
Period | 7/06/09 → 12/06/09 |
NREL Publication Number
- NREL/CP-520-48027
Keywords
- photovoltaic
- semiconductors
- solar cells