Abstract
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affects the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.
Original language | American English |
---|---|
Pages (from-to) | 139-144 |
Number of pages | 6 |
Journal | Journal of Alloys and Compounds |
Volume | 756 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 Elsevier B.V.
NREL Publication Number
- NREL/JA-5K00-71687
Keywords
- Dewetting
- Ge NCs
- Nonvolatile memory