Charging Capacity and Cycling Stability of VOx Films Prepared by Pulsed Laser Deposition

Ji Guang Zhang, Jeanne M. McGraw, John Turner, David Ginley

Research output: Contribution to journalArticlepeer-review

122 Scopus Citations

Abstract

The lithium ion charging capacity and cycling stability of vanadium oxide thin-films prepared by pulsed laser deposition (PLD) are reported. PLD films were prepared at various temperatures and atmospheres from a V6O13 target. The charging capacity of these films depended strongly on the substrate deposition temperature and atmosphere. The best crystalline films were grown at 200°C. Crystalline oriented V2O5 films were prepared by PLD at 200°C in an oxygen environment. These films can be cycled in the voltage range between 4.1 and 2.0 V for more than 100 cycles with very little capacity loss. The specific charge capacity of the films was 340 Ah/kg when the discharge current density was 0.1 mA/cm2, which corresponds to 1.2 lithium atoms per vanadium atom. The capacity increased to 1.5 lithium atoms per vanadium atom when cycled at a current density of 0.02 mA/cm2. Amorphous vanadium oxide films with similar specific capacities were prepared by PLD in vacuum at 200°C. The capacity loss in these films was less than 2% after 100 cycles. Although thermally evaporated vanadium oxide films had similar initial capacities under the same charging conditions, they lost more than 17% of their charging capacity after 100 cycles. The improved cycle stability in the amorphous vanadium oxide films may be partially attributed to the improved surface morphology of the PLD films.

Original languageAmerican English
Pages (from-to)1630-1634
Number of pages5
JournalJournal of the Electrochemical Society
Volume144
Issue number5
DOIs
StatePublished - 1997

NREL Publication Number

  • NREL/JA-452-21542

Fingerprint

Dive into the research topics of 'Charging Capacity and Cycling Stability of VOx Films Prepared by Pulsed Laser Deposition'. Together they form a unique fingerprint.

Cite this