Comparison of Degradation Rates of Individual Modules Held at Maximum Power

C. R. Osterwald, J. Adelstein, J. A. Del Cueto, B. Kroposki, D. Trudell, T. Moriarty

Research output: Contribution to conferencePaperpeer-review

70 Scopus Citations

Abstract

In this paper, we present a comparison of maximum power degradation rates of individual modules under outdoor conditions in Golden, Colorado. Test modules include single- and polycrystalline-Si (x-Si, poly-Si), amorphous Si (a-Si, single, dual, and triple junction), CdTe, CuIn-Ga-Se-S (CIS), and c-Si/a-Si heterostructure, from nine difference manufacturers. From monthly blocks of output power data, ratings were determined using multiple regressions to Performance Test Conditions (PTC). Plotting the power ratings versus time allowed degradation rates to be calculated from linear regressions. We also include a summary of module degradation rates obtained from the open literature over the past five years. Compared with the common rule-of-thumb value of 1% per year, many modules are seen to have significantly smaller degradation rates. A few modules, however, degrade significantly faster.

Original languageAmerican English
Pages2085-2088
Number of pages4
DOIs
StatePublished - 2006
Event2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 - Waikoloa, HI, United States
Duration: 7 May 200612 May 2006

Conference

Conference2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4
Country/TerritoryUnited States
CityWaikoloa, HI
Period7/05/0612/05/06

NREL Publication Number

  • NREL/CP-520-39814

Fingerprint

Dive into the research topics of 'Comparison of Degradation Rates of Individual Modules Held at Maximum Power'. Together they form a unique fingerprint.

Cite this