TY - JOUR
T1 - Compositional Analysis and Advanced Distillation Curve for Mixed Alcohols Produced via Syngas on a K-CoMoSx Catalyst
AU - Hensley, Jesse E.
AU - Lovestead, Tara M.
AU - Christensen, Earl
AU - Dutta, Abhijit
AU - Bruno, Thomas J.
AU - McCormick, Robert
PY - 2013
Y1 - 2013
N2 - The distillation behavior of mixed alcohols was studied by use of the Advanced Distillation Curve (ADC) methodology. Crude mixed alcohols (oxygenates) were generated from syngas over a potassium-promoted cobalt-molybdenum-sulfide catalyst and assayed for major and minor products. Distillation (boiling) curves were generated for the crude mixed oxygenate products and composition channel data were collected. The crude mixed alcohols consisted primarily of methanol with significant quantities of ethanol, 1-propanol, 1-butanol, methyl acetate, and ethyl acetate. These six species constitute 93.7%-95.8% (mass/mass) of the total product. Ester, ether, and aldehyde impurities were identified, as well as thiols and organic sulfides. Considering just the alcohol products without impurities, these can be blended into gasoline at 8.5% (v/v) and meet the requirements of the Octamix waiver if an appropriate corrosion inhibitor were also included (the blend would contain 3.0%-3.4% methanol, >2.5% higher alcohols (v/v), and a total oxygen content of 3.7% (mass/mass)). Distillation targeted at 50% methanol removal increased the volume of product that could be blended to over 9% (v/v). Methanol, aldehydes, and dimethyl sulfide were the first to vaporize from the mixture, and all C4+ alcohols remained within the last 20% of the distilled volume. Other products, including ethanol, propanols, esters, and organic sulfur species distilled over a range of boiling temperatures. ADCs suggest the presence of one or more azeotropes in the distillate, consistent with a large number of known binary azeotropes between components found in the mixed oxygenate product. Enthalpies of combustion were calculated for multiple distilled fractions and ranged from 890 kJ mol -1 in the first drop of distillate to 1150 kJ mol-1 in the first drop collected after distilling 80% of the original liquid volume. This energy density is low, compared to 91-octane gasoline at 3700 and 4940 kJ mol-1 in the first drop and at 80%, respectively. Comparisons of fractional distillation of the mixed oxygenate products showed directional agreement between experiment and simulation with Aspen Plus. This study provides useful insights into mixed oxygenate products derived from a sulfided catalyst, including considerations for process recycle, product constituents and their blending, and the applicability of distillation information from process simulators.
AB - The distillation behavior of mixed alcohols was studied by use of the Advanced Distillation Curve (ADC) methodology. Crude mixed alcohols (oxygenates) were generated from syngas over a potassium-promoted cobalt-molybdenum-sulfide catalyst and assayed for major and minor products. Distillation (boiling) curves were generated for the crude mixed oxygenate products and composition channel data were collected. The crude mixed alcohols consisted primarily of methanol with significant quantities of ethanol, 1-propanol, 1-butanol, methyl acetate, and ethyl acetate. These six species constitute 93.7%-95.8% (mass/mass) of the total product. Ester, ether, and aldehyde impurities were identified, as well as thiols and organic sulfides. Considering just the alcohol products without impurities, these can be blended into gasoline at 8.5% (v/v) and meet the requirements of the Octamix waiver if an appropriate corrosion inhibitor were also included (the blend would contain 3.0%-3.4% methanol, >2.5% higher alcohols (v/v), and a total oxygen content of 3.7% (mass/mass)). Distillation targeted at 50% methanol removal increased the volume of product that could be blended to over 9% (v/v). Methanol, aldehydes, and dimethyl sulfide were the first to vaporize from the mixture, and all C4+ alcohols remained within the last 20% of the distilled volume. Other products, including ethanol, propanols, esters, and organic sulfur species distilled over a range of boiling temperatures. ADCs suggest the presence of one or more azeotropes in the distillate, consistent with a large number of known binary azeotropes between components found in the mixed oxygenate product. Enthalpies of combustion were calculated for multiple distilled fractions and ranged from 890 kJ mol -1 in the first drop of distillate to 1150 kJ mol-1 in the first drop collected after distilling 80% of the original liquid volume. This energy density is low, compared to 91-octane gasoline at 3700 and 4940 kJ mol-1 in the first drop and at 80%, respectively. Comparisons of fractional distillation of the mixed oxygenate products showed directional agreement between experiment and simulation with Aspen Plus. This study provides useful insights into mixed oxygenate products derived from a sulfided catalyst, including considerations for process recycle, product constituents and their blending, and the applicability of distillation information from process simulators.
UR - http://www.scopus.com/inward/record.url?scp=84879396287&partnerID=8YFLogxK
U2 - 10.1021/ef400252x
DO - 10.1021/ef400252x
M3 - Article
AN - SCOPUS:84879396287
SN - 0887-0624
VL - 27
SP - 3246
EP - 3260
JO - Energy and Fuels
JF - Energy and Fuels
IS - 6
ER -