Abstract
Carriers in small colloidal InP nanoparticles are in strong quantum confinement regime. The low temperature photoluminescence spectrum of InP nanoparticles is composed of an excitonic luminescence at high energies and a non-exeitonic defect emission band at lower energies. HF etching of the nanoparticles reduces the defect emission and enhances the exciton process. In this work we Apply optically detected magnetic resonance spectroscopy (ODMR) both in continuous wave and time resolved mode (TR-ODMR) to study the defect luminescence in InP nanoparticles. The results show that the defect luminescence originates from weakly coupled electron-hole pair, where the electron is trapped at the surface by phosphorous vacancy, Vp, and the hole is located at the valence hand. Additionally, the results suggest that the non-etched samples are dominated by Vp at the surface. Those are mainly eliminated upon HF treatment, leaving behind small percent of Vp in the core of the nanoparticle. We also find the electron-hole exchange interaction from circular polarized ODMR measurements. The TR-ODMR measurement further clarifies the spin dynamics and characteristic of the magnetic sites. Fitting these measurements to the simulated response of the PL intensity to the square wave modulated microwave power revealed that the spin relaxation time and radiative lifetime of electron-hole pair in the nanoparticles are in the microseconds regime.
Original language | American English |
---|---|
Pages | 477-489 |
Number of pages | 13 |
State | Published - 2002 |
Externally published | Yes |
Event | Progress in Semiconductor Materials for Optoelectronic Applications: Materials Research Society Symposium - Boston, Massachusetts Duration: 26 Nov 2001 → 29 Nov 2001 |
Conference
Conference | Progress in Semiconductor Materials for Optoelectronic Applications: Materials Research Society Symposium |
---|---|
City | Boston, Massachusetts |
Period | 26/11/01 → 29/11/01 |
NREL Publication Number
- NREL/CP-590-40992