Controlling Extraction of Rare Earth Elements Using Functionalized Aryl-Vinyl Phosphonic Acid Esters

Anastasia Kuvayskaya, Thomas Mallos, Iskander Douair, Christopher Chang, Ross Larsen, Mark Jensen, Alan Sellinger

Research output: Contribution to journalArticlepeer-review

1 Scopus Citations

Abstract

Ligands that can discriminate between individual rare earth elements are important for production of these critical elements. A set of aryl-vinyl phosphonic acid ligands for extracting rare earth elements were designed and synthesized under the hypothesis that the strength of the rare earth-ligand interactions could be tuned by changing the dipole moment of the ligand. The ligands were synthesized via a two-step reaction procedure using a Heck coupling reaction to functionalize vinyl phosphonic acid, followed by Steglich esterification to obtain high-purity styryl phosphonic acid monoesters with varying dipole moments along the P-C bond. The metal binding strength and composition of the rare earth complexes formed with these styryl phosphonic acid monoesters were experimentally studied by liquid-liquid extraction techniques, while DFT calculations were performed to determine the dipole moments of the free and complexed ligands and the electronic structure of the complexes formed. All three prepared ligands were much stronger extracting agents for europium(III) than the dialkylphosphonic acids usually used for this separation. However, the order of increasing extraction strength was found to match the order of the decreasing calculated dipole moment along the P-C bond of the three styryl-based ligands, rather than correlating with increasing ligand basicity, as reflected by the pKa of the ligands. These findings suggest that this approach can be used to systematically alter the extraction strength of aromatic phosphonic monoesters for rare earth element purification.
Original languageAmerican English
Pages (from-to)16343-16353
Number of pages11
JournalInorganic Chemistry
Volume62
Issue number40
DOIs
StatePublished - 2023

NREL Publication Number

  • NREL/JA-2C00-87496

Keywords

  • functionalized ligand
  • lanthanide
  • rare earth metals
  • separations

Fingerprint

Dive into the research topics of 'Controlling Extraction of Rare Earth Elements Using Functionalized Aryl-Vinyl Phosphonic Acid Esters'. Together they form a unique fingerprint.

Cite this