Abstract
Black carbon-amended bioretention systems are an increasingly popular strategy for the removal of organic contaminants, including poly- and perfluoroalkyl substances (PFASs) and other trace organic contaminants (TOrCs), from urban stormwater. Many PFASs preferentially accumulate at the air-water interface, but detention time requirements for stormwater bioretention systems typically result in full saturation of the bioretention systems, effectively removing their air-water interfaces. This study assessed the effect of bioretention system saturation on removal of PFASs, metals, and hydrophilic TOrCs. A field-aged mixture of 40% v/v sand, 30% v/v zeolite, and 30% v/v biochar was packed into columns which were operated with hydraulic controls to remain unsaturated or fully saturated throughout the duration of the experiment. Twenty-four storm events sized to a 95th percentile storm at a California, United States military site were simulated using synthetic stormwater fortified with aqueous film forming foam-derived PFASs, TOrCs, and metals to mimic real-world conditions. Unsaturated conditions outperformed saturated conditions for removal of all PFASs analyzed. A simulated inadvertent system perturbation (i.e. flooding event) in the unsaturated columns did not result in significantly greater mobilization of PFAS mass, suggesting that more sorption to the biochar occurred as a result of the transient retention of PFASs at the air-water interface reducing kinetic sorption limitations. Overall, maintaining unsaturated conditions in a biofilter may extend the sorptive filter lifetime for PFASs by up to 83%. The results have implications for bioretention system application and design for PFAS removal in contaminated catchment areas.
Original language | American English |
---|---|
Pages (from-to) | 1233-1244 |
Number of pages | 12 |
Journal | Environmental Science: Water Research and Technology |
Volume | 10 |
Issue number | 5 |
DOIs | |
State | Published - 2024 |
NREL Publication Number
- NREL/JA-5700-89754
Keywords
- bioretention systems
- PFAS removal
- poly- and perfluoroalkyl substances