Abstract
This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has been tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2018 |
Event | 2018 World Conference on Photovoltaic Energy Conversion (WCPEC-7) - Waikoloa, Hawaii Duration: 10 Jun 2018 → 15 Jun 2018 |
Conference
Conference | 2018 World Conference on Photovoltaic Energy Conversion (WCPEC-7) |
---|---|
City | Waikoloa, Hawaii |
Period | 10/06/18 → 15/06/18 |
Bibliographical note
See NREL/CP-5D00-73757 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5D00-71568
Keywords
- coordinating voltage control
- DERs
- distributed energy resources
- distribution systems
- photovoltaic
- PV
- voltage-regulating device