Abstract
Emerging ternary chalcogenide thin film solar cell technologies, such as CuSbS2 and CuSbSe2, have recently attracted attention as simpler alternatives to quaternary Cu2ZnSnS4 (CZTS). Despite suitable photovoltaic properties, the initial energy conversion efficiency of CuSbS2 is rather low (0.3%). Here, we report on our progress towards improving the efficiency of CuSbS2 solar cells using a high throughput approach. The combinatorial methodology quickly results in baseline solar cell prototypes with 0.6% efficiency, and then modification of the back contact architecture leads to 1% PV devices.
Original language | American English |
---|---|
Number of pages | 4 |
DOIs | |
State | Published - 2015 |
Event | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 - New Orleans, United States Duration: 14 Jun 2015 → 19 Jun 2015 |
Conference
Conference | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 14/06/15 → 19/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
NREL Publication Number
- NREL/CP-5K00-64154
Keywords
- combinatorial sputtering
- solar cell absorber
- ternary copper metal chalcogenide