Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries: NREL (National Renewable Energy Laboratory)

Ahmad Pesaran, Gi-Heon Kim, Shriram Santhanagopalan, Chao Zhang, Gi-Heon Kim

Research output: NRELPresentation

Abstract

The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.
Original languageAmerican English
Number of pages23
StatePublished - 2015

Publication series

NamePresented at the 28th International Electric Vehicle Symposium and Exhibition (EVS28), 3-6 May 2015, Goyang, Korea

NREL Publication Number

  • NREL/PR-5400-63701

Keywords

  • battery
  • battery abuse
  • lithium ion
  • modeling
  • MSMD
  • multi-physics
  • multi-scale

Fingerprint

Dive into the research topics of 'Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries: NREL (National Renewable Energy Laboratory)'. Together they form a unique fingerprint.

Cite this