Abstract
A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.
Original language | American English |
---|---|
Number of pages | 9 |
DOIs | |
State | Published - 2016 |
Event | ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2016 - Busan, Korea, Republic of Duration: 19 Jun 2016 → 24 Jun 2016 |
Conference
Conference | ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2016 |
---|---|
Country/Territory | Korea, Republic of |
City | Busan |
Period | 19/06/16 → 24/06/16 |
Bibliographical note
See NREL/CP-5000-65918 for preprintNREL Publication Number
- NREL/CP-5000-67554
Keywords
- Lumped-Mass Model
- Mooring Dynamics Analysis
- Radiation And Diffraction Theory
- Time-Domain Numerical Model
- Wave Energy