Abstract
For decades, copper has been introduced in CdTe devices to improve overall performance (open circuit voltage, fill factor, and series resistance). While multiple articles have reported on Cu-based defects, very little is known about how the local structure around the copper atom affects electrical performance. Using X-ray Absorption Near Edge Structure (XANES) coupled with X-ray microscopy we investigate good and poor performing region in Cu-doped CdTe devices. Our XANES coupled with theoretical standards by FEFF9 suggest that CU2Te phase and CuCdmay be responsible for the high electrical performance of the regions under study. This correlation of structure-performance at the nanoscale offers a unique framework to understand and tune processes with deep implications to the overall electrical performance of the solar cell.
Original language | American English |
---|---|
Pages | 1547-1551 |
Number of pages | 5 |
DOIs | |
State | Published - 14 Jun 2020 |
Event | 47th IEEE Photovoltaic Specialists Conference, PVSC 2020 - Calgary, Canada Duration: 15 Jun 2020 → 21 Aug 2020 |
Conference
Conference | 47th IEEE Photovoltaic Specialists Conference, PVSC 2020 |
---|---|
Country/Territory | Canada |
City | Calgary |
Period | 15/06/20 → 21/08/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
NREL Publication Number
- NREL/CP-5K00-79501
Keywords
- CdTe
- CuxTe XANES
- FEFF9
- XBIC