Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

Sean P. Dunfield, David T. Moore, Talysa R. Klein, David M. Fabian, Jeffrey A. Christians, Alex G. Dixon, Benjia Dou, Shane Ardo, Matthew C. Beard, Sean E. Shaheen, Joseph J. Berry, Maikel F.A.M. Van Hest

Research output: Contribution to journalArticlepeer-review

32 Scopus Citations

Abstract

Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer. Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.

Original languageAmerican English
Pages (from-to)1192-1197
Number of pages6
JournalACS Energy Letters
Volume3
Issue number5
DOIs
StatePublished - 2018

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

NREL Publication Number

  • NREL/JA-5K00-71071

Keywords

  • lamination
  • perovskite
  • photovoltaics
  • solar-photochemistry

Fingerprint

Dive into the research topics of 'Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface'. Together they form a unique fingerprint.

Cite this