Abstract
The stability of intrinsic and Al-doped single- and bi-layer ZnO for thin-film CuInGaSe2 solar cells, along with Al-doped Zn1-xMgxO alloy and Sn-doped In2O3 (ITO) and F-doped SnO2, was evaluated by direct exposure to damp heat (DH) at 85oC and 85% relative humidity. The results show that the DH-induced degradation rates followed the order of Al-doped ZnO and Zn1-xMgxO >> ITO > F:SnO2. Thedegradation rates of Al:ZnO were slower for films of higher thickness, higher substrate temperature in sputter-deposition, and with dry-out intervals. As inferred from the optical micro-imaging showing the initiation and propagation of degrading patterns and regions, the degradation behavior appears similar for all TCOs, despite the obvious difference in the degradation rate. A degradationmechanism is proposed to explain the temporal process involving thermal hydrolysis.
Original language | American English |
---|---|
Number of pages | 9 |
State | Published - 2008 |
Event | 33rd IEEE Photovoltaic Specialists Conference - San Diego, California Duration: 11 May 2008 → 16 May 2008 |
Conference
Conference | 33rd IEEE Photovoltaic Specialists Conference |
---|---|
City | San Diego, California |
Period | 11/05/08 → 16/05/08 |
NREL Publication Number
- NREL/CP-520-42525
Keywords
- CIGS
- damp-heat induced degradation
- optical micro-imaging
- PV
- sputter deposition
- thermal hydrolysis
- thin films
- transparent conducting oxides (TCO)