Defect-Driven Interfacial Electronic Structures at an Organic/Metal-Oxide Semiconductor Heterojunction

Paul Winget, Laura K. Schirra, David Cornil, Hong Li, Veaceslav Coropceanu, Paul F. Ndione, Ajaya K. Sigdel, David S. Ginley, Joseph J. Berry, Jaewon Shim, Hyungchui Kim, Bernard Kippelen, Jean Luc Brédas, Oliver L.A. Monti

Research output: Contribution to journalArticlepeer-review

45 Scopus Citations


The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties.

Original languageAmerican English
Pages (from-to)4711-4716
Number of pages6
JournalAdvanced Materials
Issue number27
StatePublished - 2014

NREL Publication Number

  • NREL/JA-5K00-62587


  • interfacial electronic structure
  • organic semiconductor
  • surface defects
  • ZnO


Dive into the research topics of 'Defect-Driven Interfacial Electronic Structures at an Organic/Metal-Oxide Semiconductor Heterojunction'. Together they form a unique fingerprint.

Cite this