Deposition Pressure Dependent Structural and Optoelectronic Properties of Ex-Situ Boron-Boped Poly-Si/SiOx Passivating Contacts Based on Sputtered Silicon: Article No. 110602

Thien Truong, Di Yuan, Wenhao Chen, Wenjie Wang, Harvey Guthrey, Mowafak Al-Jassim, Andres Cuevas, Daniel Macdonald, Hieu Nguyen

Research output: Contribution to journalArticlepeer-review

16 Scopus Citations

Abstract

Among common methods to form polycrystalline silicon (poly-Si) films for passivating-contact solar cells, physical vapor deposition, in particular sputtering, is the safest one as it does not require any toxic gaseous precursors. One of the critical parameters to control the properties of sputtered silicon films is their deposition pressure. In this work, structural and optoelectronic characteristics of ex-situ boron-doped poly-Si/SiOx passivating contacts, formed from sputtered intrinsic amorphous silicon (a-Si) deposited at different pressures on top of SiOx/c-Si substrates and subjected to a high-temperature boron diffusion step, are investigated. The deposition rate and density of the as-deposited a-Si films increase with reducing pressure. Low-temperature photoluminescence spectra captured from the as-deposited samples at different pressures do not show typical emissions from hydrogenated a-Si. Meanwhile, their Fourier-transform infrared absorption spectra all show Si–H stretching modes, indicating that hydrogen had been initially incorporated into the chemical SiOx layers and eventually hydrogenated the a-Si/SiOx interfaces during the sputtering process. After the high-temperature boron-diffusion step, all hydrogen-related peaks disappear. Lower pressure films (1.5 and 2.5 mTorr) show more consistent improved performance after hydrogen treatments, compared to higher pressure films (4 and 5 mTorr). The resultant passivating contacts at 2.5 mTorr achieve a low single-side recombination current density Jo of ~9 fA/cm2, whereas their contact resistivity is still low at 15 mO cm2.
Original languageAmerican English
Number of pages6
JournalSolar Energy Materials and Solar Cells
Volume215
DOIs
StatePublished - 2020

NREL Publication Number

  • NREL/JA-5K00-76318

Keywords

  • boron doped poly-Si
  • passivating contacts
  • silicon solar cells
  • sputtering

Fingerprint

Dive into the research topics of 'Deposition Pressure Dependent Structural and Optoelectronic Properties of Ex-Situ Boron-Boped Poly-Si/SiOx Passivating Contacts Based on Sputtered Silicon: Article No. 110602'. Together they form a unique fingerprint.

Cite this