Abstract
A tapered/twisted blade was designed to operate on the Combined Experiment Rotor (CER) of the National Renewable Energy Laboratory (NREL), which is a stall-regulated downwind wind turbine having a rated power of 20 kilowatt. The geometry of the new blade set was optimized based on annual energy production subject to the constraints imposed on the design. These constraints were mainly related toscientific needs for fundamental research in rotor aerodynamics. A trade-off study was conducted to determine the effect of the different design constraints. Based on the results of this study, which considered nonlinear twist and taper distributions as well as the NREL S809, S814, S822 and S823 airfoils, a blade having a linear taper and a nonlinear twist distribution that uses the S809 airfoilfrom root to tip was selected. This blade configuration is the logical continuation of the previous constant-chord twisted and untwisted blade sets and will facilitate comparison with those earlier blades. Despite the design constraints based on scientific needs, the new blade is more representative of commercial blades than the previous blade sets.
Original language | American English |
---|---|
Number of pages | 30 |
State | Published - 1999 |
Bibliographical note
Work performed by University of Illinois at Urbana-Champaign, Urbana, IllinoisNREL Publication Number
- NREL/SR-500-26173