Abstract
Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components;and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.
Original language | American English |
---|---|
Number of pages | 24 |
State | Published - 2006 |
Event | 2006 ASME Wind Energy Symposium - Reno, Nevada Duration: 9 Jan 2006 → 12 Jan 2006 |
Conference
Conference | 2006 ASME Wind Energy Symposium |
---|---|
City | Reno, Nevada |
Period | 9/01/06 → 12/01/06 |
NREL Publication Number
- NREL/CP-500-39066
Keywords
- design
- hydrodynamic loading
- modeling
- offshore wind turbines
- wind turbine simulation