Abstract
This report describes work performed under this subcontract by Colorado State University (CSU). The results of the subcontract effort included progress in understanding CdTe and Cu(In1-xGax)Se2-based solar cells, in developing additional measurement and analysis techniques at the module level, and in strengthening collaboration within the thin-film polycrystalline solar-cell community. A majorpart of the CdTe work consisted of elevated-temperature stress tests to determine fabrication and operation conditions that minimize the possibility of long-term performance changes. Other CdTe studies included analysis of the back-contact junction, complete photon accounting, and the tradeoff with thin CdS between photocurrent gain and voltage loss. The Cu(In1-xGax)Se2 studies included work onthe role of sodium in enhancing performance, the conditions under which conduction-band offsets affect cell performance, the transient effects of cycling between light and dark conditions, and detailed analysis of several individual series of cells. One aspect of thin-film module analysis has been addressing the differences in approach needed for relatively large individual cells made withoutgrids. Most work, however, focused on analysis of laser-scanning data, including defect signatures, photocurrent/shunting separation, and the effects of forward bias or high-intensity light. Collaborations with other laboratories continued on an individual basis, and starting in 1994, collaboration was through the national R&D photovoltaic teams. CSU has been heavily involved in the structureand logistics of both the CdTe and CIS teams, as well as making frequent technical contributions in both areas.
Original language | American English |
---|---|
Publisher | National Renewable Energy Laboratory (NREL) |
Number of pages | 59 |
State | Published - 1999 |
Bibliographical note
Work performed by Colorado State University, Fort Collins, ColoradoNREL Publication Number
- NREL/SR-520-26315