Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

Venkata Lakkireddy, Robert McCormick, Phillip Weber, Steve Howell

Research output: Contribution to conferencePaperpeer-review

2 Scopus Citations

Abstract

This project's objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs - one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples. Core samples were taken from the cleaned DPF and were subjected to scanning electron microscope energy dispersive x-ray spectroscopy (SEM-EDS) and XRF analysis. A comparison of the data from the two DPFs is presented. The XRD and XPS analysis showed that the compounds present in the ash from the two DPFs were nearly identical, though differing in concentrations. CaSO4 was the biggest component of the ash from both DPFs. The metals doped B20 fuel resulted in ash with similar characteristics to that deposited by the lube oil and did not appear to have any deleterious physical effects on the DPF substrate (did not penetrate the substrate).

Original languageAmerican English
Number of pages27
DOIs
StatePublished - 11 Apr 2023
EventSAE 2023 World Congress Experience, WCX 2023 - Detroit, United States
Duration: 18 Apr 202320 Apr 2023

Conference

ConferenceSAE 2023 World Congress Experience, WCX 2023
Country/TerritoryUnited States
CityDetroit
Period18/04/2320/04/23

Bibliographical note

Publisher Copyright:
© 2023 SAE International. All rights reserved.

NREL Publication Number

  • NREL/CP-4A00-85521

Other Report Number

  • SAE Technical Paper No. 2023-01-0296

Keywords

  • biodiesel
  • diesel particle filter
  • metals

Fingerprint

Dive into the research topics of 'Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs'. Together they form a unique fingerprint.

Cite this