TY - JOUR
T1 - Diffusion in Intact Secondary Cell Wall Models of Plants at Different Equilibrium Moisture Content
T2 - Article No. 100105
AU - Sarkar, Daipayan
AU - Bu, Lintao
AU - Jakes, Joseph
AU - Zieba, Jacob
AU - Kaufman, Isaiah
AU - Crowley, Michael
AU - Ciesielski, Peter
AU - Vermaas, Josh
PY - 2022
Y1 - 2022
N2 - Secondary plant cell walls are composed of carbohydrate and lignin polymers, and collectively represent a significant renewable resource. Leveraging these resources depends in part on a mechanistic understanding for diffusive processes within plant cell walls. Common wood protection treatments and biomass conversion processes to create biorefinery feedstocks feature ion or solvent diffusion within the cell wall. X-ray fluorescence microscopy experiments have determined that ionic diffusion rates are dependent on cell wall hydration as well as the ionic species through non-linear relationships. In this work, we use classical molecular dynamics simulations to map the diffusion behavior of different plant cell wall components (cellulose, hemicellulose, lignin), ions (Na+, K+, Cu2+, Cl-) and water within a model for an intact plant cell wall at various hydration states (3-30 wt% water). From these simulations, we analyze the contacts between different plant cell wall components with each other and their interaction with the ions. Generally, diffusion increases with increasing hydration, with lignin and hemicellulose components increasing diffusion by an order of magnitude over the tested hydration range. Ion diffusion depends on charge. Positively charged cations preferentially interact with hemicellulose components, which include negatively charged carboxylates. As a result, positive ions diffuse more slowly than negatively charged ions. Measured diffusion coefficients are largely observed to best fit piecewise linear trends, with an inflection point between 10 and 15% hydration. These observations shed light onto the molecular mechanisms for diffusive processes within secondary plant cell walls at atomic resolution.
AB - Secondary plant cell walls are composed of carbohydrate and lignin polymers, and collectively represent a significant renewable resource. Leveraging these resources depends in part on a mechanistic understanding for diffusive processes within plant cell walls. Common wood protection treatments and biomass conversion processes to create biorefinery feedstocks feature ion or solvent diffusion within the cell wall. X-ray fluorescence microscopy experiments have determined that ionic diffusion rates are dependent on cell wall hydration as well as the ionic species through non-linear relationships. In this work, we use classical molecular dynamics simulations to map the diffusion behavior of different plant cell wall components (cellulose, hemicellulose, lignin), ions (Na+, K+, Cu2+, Cl-) and water within a model for an intact plant cell wall at various hydration states (3-30 wt% water). From these simulations, we analyze the contacts between different plant cell wall components with each other and their interaction with the ions. Generally, diffusion increases with increasing hydration, with lignin and hemicellulose components increasing diffusion by an order of magnitude over the tested hydration range. Ion diffusion depends on charge. Positively charged cations preferentially interact with hemicellulose components, which include negatively charged carboxylates. As a result, positive ions diffuse more slowly than negatively charged ions. Measured diffusion coefficients are largely observed to best fit piecewise linear trends, with an inflection point between 10 and 15% hydration. These observations shed light onto the molecular mechanisms for diffusive processes within secondary plant cell walls at atomic resolution.
KW - compound middle lamella
KW - degree of polymerization
KW - molecular dyamics
KW - plant cell wall
KW - relative humidity
KW - X-ray fluorescence microscopy
UR - http://www.scopus.com/inward/record.url?scp=85151244681&partnerID=8YFLogxK
U2 - 10.1016/j.tcsw.2023.100105
DO - 10.1016/j.tcsw.2023.100105
M3 - Article
SN - 2468-2330
VL - 9
JO - The Cell Surface
JF - The Cell Surface
ER -