Abstract
The gas-phase photocatalytic oxidation of trichloroethylene (TCE) over titanium dioxide was investigated as a potential method for destroying this common pollutant. The results from this study agree with earlier studies in that high levels of destruction of TCE were achieved. Accompanying these high rates of destruction were high quantum yields (approaching unity). However, direct-sampling mass spectrometry and gas-phase Fourier transform infrared (FTIR) spectroscopy revealed that there are significant quantities of byproducts produced [phosgene, dichloroacetyl chloride (DCAC), carbon monoxide, molecular chlorine]. The DCAC has been rationalized on the basis of a chemical reaction mechanism in which the TCE molecules are oxidized in a chain reaction involving Cl atoms. This mechanism appears to be validated by tests with other chlorinated ethylenes (perchloroethylene, dichloroethylenes). Phosgene may arise at least partially from the photocatalytic oxidation of DCAC, and molecular chlorine may result from the recombination of chlorine atoms. The results of this study are discussed relative to aqueous-phase photocatalytic oxidation of TCE where chlorinated intermediates have been observed.
Original language | American English |
---|---|
Pages (from-to) | 732-740 |
Number of pages | 9 |
Journal | Environmental Science and Technology |
Volume | 27 |
Issue number | 4 |
DOIs | |
State | Published - 1993 |
NREL Publication Number
- NREL/JA-431-5023