Abstract
We report on our project to develop inkjet printable contacts for solar cells. Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. Thick, highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and PCB have been printed at 100-200 oC in air and N2, respectively. Ag grids were inkjet-printed on Si solar cells and fired through siliconnitride AR layer at 850 oC resulting in 8% cells. Next-generation multicomponent inks (including etching agents) have also been developed with improved fire-through contacts leading to higher cell efficiencies. The approach developed can be easily extended to other conductors such as Pt, Pd, and Au, etc. In addition, PEDOT-PSS polymer-based conductors were inkjet-printed with the conductivity asgood or better than those of polymer-based conductors.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2005 |
Event | 2004 DOE Solar Energy Technologies Program Review Meeting - Denver, Colorado Duration: 25 Oct 2004 → 28 Oct 2004 |
Conference
Conference | 2004 DOE Solar Energy Technologies Program Review Meeting |
---|---|
City | Denver, Colorado |
Period | 25/10/04 → 28/10/04 |
Bibliographical note
Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting, 25-28 October 2004, Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-102005-2067; NREL/CD-520-37140)NREL Publication Number
- NREL/CP-520-37080
Keywords
- inkjet printable contacts
- multicomponent
- multifunctional
- polymer-based conductors
- PV
- solar cells